
Achieving Agility Through Architecture Visibility

Carl Hinsman1, Neeraj Sangal2, and Judith Stafford3

1 L.L.Bean, Inc.

Freeport, Maine USA

chinsman@llbean.com

2 Lattix, Inc.

Andover, Massachusetts USA

neeraj.sangal@lattix.com

3 Tufts University

Medford, Massachusetts USA

jas@cs.tufts.edu

Abstract. L.L.Bean is a large retail organization whose development processes

must be agile in order to allow rapid enhancement and maintenance of its

technology infrastructure. Over the past decade L.L.Bean’s software code-base had

become brittle and difficult to evolve. An effort was launched to identify and

develop new approaches to software development that would enable ongoing

agility to support the ever-increasing demands of a successful business. This paper

recounts L.L.Bean’s effort in restructuring its code-base and adoption of process

improvements that support an architecture-based agile approach to development,

governance, and maintenance. Unlike traditional refactoring, this effort was guided

by an architectural blueprint that was created in a Dependency Structure Matrix

where the refactoring was first prototyped before being applied to the actual code

base.

Keywords: architecture, dependency, agility.

1 Introduction

This paper reports on L.L.Bean, Inc.’s experience in infusing new life to its evolving

software systems through the increased visibility into its system’s architecture

through the extraction and abstraction of code dependencies. Over years of software

development the information technology infrastructure at L.L.Bean had become

difficult to maintain and evolve. It has long been claimed that visibility of

architectural dependencies could help an organization in L.L.Bean’s position

[9][12][17]. In this paper we provide support for these claims and demonstrate the

value of applying these emerging technologies to a large, commercial code-base. We

explore the strengths and weaknesses of the application of the Dependence Structure

Matrix (DSM) as implemented in the Lattix LDM [16], to improve the agility of the

L.L.Bean code base, and propose avenues for follow-on research to further improve

tool support for architecture-based refactoring in support of software agility.

2

L.L.Bean has been a trusted source for quality apparel, reliable outdoor

equipment and expert advice for nearly 100 years1. L.L.Bean’s software is used

to manage its sales, which include retail, mail-order catalog, as well as on-line

sales, inventory, and human resources. More than a 100 architects, engineers,

and developers work on continual improvement and enhancement of the

company’s information technology infrastructure, which for the last 8 years, has

suffered the typical problems associated with rapid evolution such as increased

fragility and decreased intellectual control resulting in increased difficulty in

building the system. While the company’s software development processes

have long included a number of good practices and coding rules to help avoid

these issues, in the end the speed of evolution overwhelmed the development

teams and maintenance and evolution of the software infrastructure were

recognized as chief concerns by upper management of the company.

Investigation into the core cause of the problems pointed to the fact that the

code had become a complex entanglement of interdependencies. It was decided

that the code must be restructured and software engineering process must be

enhanced to prevent the web of dependencies from recurring in the future.

Refactoring, as described by Fowler et al. [4] and others in the object

community is a disciplined technique for restructuring an existing body of code,

altering its internal structure without changing its external behavior.

Refactoring is generally practiced as a series of small changes to classes and

collections of classes that modify the structure in a way that improves the code

or moves it in an intended direction so that the code is better structured for

future enhancements, improved comprehensibility, easier unit testing etc. There

are a number of tools that provide support for refactoring (e.g. Eclipse and

Intellij). These tools provide a variety of capabilities such as generating

‘getters/setters’ and ‘constructors’ etc that simplify code modifications.

However, the approach of localized modifications was too limited and L.L.Bean

recognized the need to approach solving the problem from a global perspective.

Because the software architecture of a system is a model of software

elements and their interconnections that provides a global view of the system it

allows an organization to maintain intellectual control over the software and

provides support for communication among stakeholders [2][18]. As such, it

seemed an architectural approach to “refactoring” L.L.Bean’s code base would

be appropriate. A variety of approaches for exploring architectural visibility

were explored. Ultimately, an approach based on a Dependency Structure

Matrix (DSM) [15] representation was selected because of its innate ability to

scale and the ease with which alternative architectural organizations could be

explored.

L.L.Bean’s strategic approach to refactoring required few code changes but

rather a code consolidation followed by a series of structural modifications.

Unlike current approaches to refactoring, L.L.Bean’s method is driven by

overall visibility of the architecture and includes five steps: define the problem,

visualize the current architecture, model the desired architecture in terms of

1 http://www.llbean.com

Achieving Agility Through Architecture Visibility 3

current elements, consolidate and repackage the code base, and automate

governance of the architecture through continuous integration.

This approach to software development employs the Lattix Architecture

Management System as the primary tool for architectural analysis and

management. It also uses custom tools developed at L.L.Bean for automating

changes to the code organization, and for maintaining visibility of the state of

evolving dependencies on a continuing basis.

The remainder of the paper recounts the L.L.Bean experience in

“refactoring” and describes the architecture-based approach to software

development that has been created and adopted as an organizational standard at

L.L.Bean. The new standard was welcomed by all development teams and

provides a mechanism for continuous improvement as the technology

infrastructure evolves to meet ever-growing business demands of this

increasingly popular brand.

We begin our report with a description of the problem facing L.L.Bean’s

software developers. This is followed by a recounting of research toward

identifying a viable solution and the basis for the decision to apply an approach

based on a Dependency Structure Matrix. We then provide an overview of this

approach in enough detail to support the reader’s understanding of this report,

and follow that with description of our experience using and extending the

Lattix tools at L.L.Bean. We then summarize lessons learned through this

experience and propose avenues for future research in providing additional

mechanisms to maintain architecture-based agility.

2 Background

2.1 IT Infrastructure

A significant part of L.L.Bean’s information technology infrastructure is written

in Java and runs on Windows, UNIX, or Linux based servers. The system has

gone through a rapid evolution over the last eight years due to several massive

development efforts undertaken in response to increased demand from multiple

business units. New front-end systems, strategic web site updates, regular

infrastructure improvements, external product integration, and security have

been among the key drivers.

L.L.Bean develops software primarily in Java and follows object oriented

programming principles and patterns [5]. Development teams normally consist

of ten or fewer developers grouped by business domains such as product, order

capture, human resources, and IT infrastructure. Package names are chosen to

represent behavior and/or responsibility of groups of Java classes within the

package. Aligning development structure with naming conventions facilitates

reuse and helps avoid duplication of effort by increasing visibility. Although it

does not address interdependencies among modules, this alignment was an

important contributor to the success of this project.

4

The current system has more than one million lines of code assembled into

more than a 100 jar files. In turn, the actual code is organized into nearly 1,000

Java packages and more than 3,000 Java classes. Despite the use of good

software development practices and standards, normal code evolution created a

complex entanglement of interdependencies, increasing software development

and maintenance costs, and decreasing reuse potential. Multiple code bases

diverged over time, which increased complexity significantly.

Initially, ad-hoc approaches were tried to deal with these problems.

Interdependency issues were mainly identified by configuration managers while

attempting to compile and assemble applications for deployment. These were

then fixed one dependency entanglement at a time. The process was slow and

correcting one problem often led to a different set of problems. One significant

effort for resolving core dependency entanglements consumed three man weeks

of effort and was not entirely successful. Moreover, there was nothing to

prevent entanglements from recurring.

Business needs continued to drive new development, and interdependency

entanglements continued to grow. Software development and configuration

management costs increased in stride. IT management understood the economic

significance of reuse and created a small team of software engineers focused on

creating and implementing a comprehensive packaging and reuse strategy. This

team quickly identified the following key issues:

• Too many interdependencies increased testing and maintenance costs

• Multiple Code Bases (segmented somewhat by channel) resulted from the

rapid evolution and could not be merged. A goal of the effort was to

consolidate into a single code base and transition the development life

cycle to a producer/consumer paradigm.

• Architecture was not visible and no person or group in the organization

maintained intellectual control over the software

• There was no mechanism to govern system evolution

A solution was needed that supported immediate needs while providing the

framework for refactoring the architecture to prevent costly entanglements from

recurring.

2.2 Preliminary Research and Tool Selection

There were two key tasks. First, research the abstract nature of software

packaging from various viewpoints. Second, create a clear and detailed

understanding of the existing static dependencies in L.L.Bean’s Java code base.

What dependencies actually existed? Were there patterns to these

dependencies?

In addition to the major goals of eliminating undesirable dependencies and

governing packaging of future software development, the resulting packaging

structure needed to accomplish other goals. First, provide a single, consolidated

code base to support a producer/consumer paradigm (where development teams

Achieving Agility Through Architecture Visibility 5

consume compiled code instead of merging source code into their development

streams) while helping to define code ownership and responsibility. Next,

dynamically generate a view of the interdependencies of deliverable software

assets. Last, minimize the cost and effort required to compile and assemble

deliverable software assets. An unstated goal held by the team was to increase

the level of reuse by fostering a Java development community and increase

communication between development teams.

It was important to build confidence in the new strategy. The business, and

more specifically the development teams supporting the various business

domains, would not entertain undertaking a restructuring effort without

evidence of the soundness of the strategy. The team understood that the way to

earn this trust was through research, communication and prototyping.

Literature Search

As a starting point, the team sought articles and academic papers primarily

through the Internet. Managing dependencies is not a new problem, and

considerable research and analysis on a wide range of concepts and approaches

was available to the strategy development team [3][6][7][10][11][14][15][17].

Another effort was underway at L.L.Bean to create a strategy for reuse metrics;

there was overlap between these two efforts [7][8][13][14]. Much of the

research suggested that code packaging in domain-oriented software could

promote reuse and facilitate metrics. Exploring these metrics, and tools to

support them, provided additional focus. Transition of research into practice

would happen more quickly with increased effort on both sides to bridge the

researcher/practitioner communication chasm.

Analysis Tools

There are many tools available for detecting and modeling dependencies in

Java. The team wanted to find the most comprehensive and easy to understand

tool. Initially, open-source tools were selected for evaluation. These included

Dependency Finder2 and JDepend3 (output visualized through Graphviz4),

among others5,6. Each of these tools were useful in understanding the state of

dependencies, but none of them offered the comprehensive, easy to understand,

global view needed nor did they provide support for restructuring or

communication among various stakeholders, which included IT managers,

architects, and developers.

2 http://depfind.sourceforge.net/
3 http://clarkware.com/software/JDepend.html
4 http://www.graphviz.org/
5http://java-source.net/open-source/code-analyzers/byecycle
6http://java-source.net/open-source/code-analyzers/classycle

6

Graphing the analysis was cumbersome, requiring the use of a combination

of tools to produce illustrations of problem spaces. One solution was to use

JDepend to analyze the code base, which outputs XML. This output was then

transformed into the format required by Graphviz for generating directed

graphs. The process was computationally intensive, and there was a limit to the

amount of code that could be analyzed collectively in this fashion. Furthermore,

when this view was generated it was nearly incomprehensible and of little

practical value in either communicating or managing the architecture. Using

these tools was inefficient and less effective than had been anticipated. After a

problem was identified, it was necessary to code or compile a potential solution

and then repeat the entire analysis to illustrate the real impact. Given the extent

of the interdependency entanglement, identifying and fixing problems through

this approach was found to be too cumbersome to be practical.

L.L.Bean’s research identified the Lattix matrix-based dependency analysis

tool as promising and, through experience, found it to be effective in that it

offered a comprehensive easy to understand interface as well as mechanisms for

prototyping and applying architecture rules, and supporting “what if” analysis

without code modification.

The Lattix Architecture Management System

Lattix has pioneered an approach using system interdependencies to create an

accurate blueprint of software applications, databases and systems. To build the

initial Lattix model, the LDM tool is pointed at a set of Java jar files. Within

minutes, the tool creates a “dependency structure matrix” (DSM)7
 that shows the

static dependencies in the code base. Lattix generated DSMs have a hierarchical

structure, where the default hierarchy reflects the jar and the package structure.

This approach to visualization also overcomes the scaling problems that

L.L.Bean encountered with directed graphs. Furthermore, Lattix allows users to

edit system structures to run what-if scenarios and to specify design rules to

formalize, communicate, and enforce architectural constraints. This means that

an alternate structure, which represents the desired architectural intent, can be

manipulated and maintained even if the code structure is not immediately a true

reflection. Once an architecture is specified Lattix allows that architecture be

monitored in batch mode and key stakeholders are notified of the results.

The Lattix DSM also offers partitioning algorithms to group and re-order

subsystems. The result of this analysis shows the layering of the subsystems as

well as the grouping of subsystems that are coupled through cyclic

dependencies.

7 http://www.dsmweb.org

Achieving Agility Through Architecture Visibility 7

 3 Refactoring the Architecture

With tool support and good development practices in place, L.L.Bean created a

five-step approach to architecture-based maintenance that increased the agility

of our software development process.

STEP 1: Mapping the Initial State

The first step in the architecture-based refactoring process was to illuminate the

state of the code base. An initial DSM was created by loading all Java jars into a

Lattix LDM. Then the subsystems in the DSM were organized into layers [1].

The magnitude of the problem became apparent once this DSM was created. It

was possible to see numerous undesirable dependencies where application code

was being referenced by frameworks and utility functions. The example shown

in Fig. 1 illustrates a highly complex and cyclic dependency grouping.

A DSM is a square matrix with each subsystem being represented by a row

and column. The rows and columns are numbered for ease of reference and to

reduce clutter. The results of DSM partitioning, the goal of which is to group

subsystems together in layers, can be evidenced by the lower triangular nature

of the upper left-hand portion of the matrix shown in Fig. 1. Each layer in turn

is composed of subsystems that are either strongly connected or independent of

each other. In this figure, the presence of dependencies above the diagonal in

the lower right-hand grouping shows us that subsystems 30..37 are circularly

connected. For instance, if you look down column 31, you will see that

subsystem 31 depends on subsystem 30 with strength of ‘3’. Going further

down column 31, we also note that subsystem 31 depends on subsystems 33 and

34 with strengths of ‘16’ and ‘85’, respectively. By clicking on an individual

cell one can see the complete list of dependencies in an attached context

sensitive display panel. The DSM view of the L.L.Bean system immediately

shed light on the sources of maintenance problems.

Fig. 1. Using Lattix LDM to Reveal Layering

8

STEP 2: Modeling the Desired Architecture

L.L.Bean’s Java packaging strategy is a layered architecture [1] that leverages

the earlier successes of the package naming approach, adding high-level

organizational constructs and rules to govern static dependencies. The Java

classes could be grouped into three categories: domain independent, domain

specific, and application specific. These classes can be organized into common

layers according to their specificity with the most generalized layers at the

bottom and the most specific layers at the top.

 A layered packaging architecture has several benefits. It is intuitive enough

to be understood by a wide range of stakeholders, from software developers and

engineers to those with only a limited technical understanding of software

development, facilitating discussions between IT managers, project leaders,

domain architects, configuration engineers, and software developers.

As the L.L.Bean development organization grew larger and more diverse,

increasing communication and coordination across software development

efforts also became more difficult. It was hoped that a cohesive and layered

architecture would simplify development and improve communication. Clearly

communicated and implemented architectural intent would allow teams to

develop software components, services and applications without creating

undesirable dependencies. Moreover, it would allow development teams to

focus on their problem domain and areas of expertise.

A layered architecture such as that shown Fig. 2, governed by rules,

minimizes the development of complex dependencies and allows for simplified

configuration and assembly strategies. Each layer in L.L.Bean’s strategy has

well-defined responsibility. Organized in a hierarchy of generality/specificity,

each layer is governed by the principle that members of a given layer can only

depend on other members in the same level, or in layers below it. Each layer, or

smaller subset within a layer, is assembled in a cohesive unit, often referred to

Fig. 2. Example Layered Architecture

Achieving Agility Through Architecture Visibility 9

as a program library or subsystem. In L.L.Bean’s case, these cohesive units are

Java jar files. This approach produces a set of independent consumable

components that are not coupled by complex dependencies, and creates a solid

foundation for the producer/consumer paradigm.

STEP 3: Validating the Architecture

The next step was prototyping and transforming the current state into the

intended architecture.

First, subsystem containers were created at the root level of the model for

each of the high-level organizational layers defined in the architecture; initially

these were the familiar domain-independent, domain-specific, and application-

specific layers. The next step was to examine each jar file, and move them into

one of the defined layers.

Here, the benefits of L.L.Bean’s early package naming approach became

clear; behavior and responsibility were built into package naming clarifying the

appropriate layer in most cases. In a small set of specialized cases, developers

with in-depth knowledge of the code were consulted. Here again, the well

defined and documented layered architecture facilitated communication with

software engineers and simplified the process of deciding on the appropriate

layer. With the architecture already well understood, it took only two working

days to successfully transform the initial model into the intended architecture,

simply by prototypically moving Java classes to their appropriate package

according to both their generality/specificity and their behavior/responsibility.

At the end of that time, we were surprised to observe that nearly all undesirable

dependencies at the top level had been eliminated. The DSM shown in Fig. 3

captures the state of the prototyping model near the end of the two-day session.

The lower triangular nature of the DSM shows the absence of any top-level

cycle.

Fig. 3. DSM of layered architecture, no top-level cycles present

STEP 4: Identifying Sources of Architecture Violation

Three key packaging anti-patterns were identified that were at the core of the

interdependency entanglement. This is illustrated by the following examples

(note: the arrows in the figures show “uses” dependencies [2]):

10

Misplaced Common Types: Many types (i.e. Value Object Pattern, Data

Transfer Object Pattern, etc.) were packaged at the same hierarchical level as

the session layer (Session Façade) to which they related. This approach widely

scattered dependencies creating a high degree of complexity, and a high number

of cyclic dependencies. This issue was resolved as shown in Fig. 4, by moving

many of these common types from their current package to an appropriate lower

layer. This resolved an astounding 75% of existing circular dependencies.

Fig. 4. Repackaging Common Types

Misplaced Inheritable Concrete Class: When a concrete class is created by

extending an abstract class, it is packaged according to its behavior. However,

when a new concrete class is created by extending this class it then creates

Fig. 5. Moving Descendants into Ancestor's Package

a coupling between components that were normally expected to be independent.

Moving the concrete class to the shared layer where its parent was located

solved the problem as shown in Fig. 5. This also supports the notion that

concrete classes should not be extended [19]. Instead, whenever the need arises

to extend a concrete class, the code should be refactored to create a new abstract

class, which is then used as a base class for the different concrete classes. This

problem also illustrates that as code bases evolve it is necessary to continuously

analyze and restructure the code.

Achieving Agility Through Architecture Visibility 11

Catchall Subsystems: The behavior/responsibility focus of the early package

naming approach produced a subsystem dedicated to IT infrastructure. This

became a disproportionately large “catch-all” subsystem that represented a

broad array of mostly unrelated concepts. It also included a small set of highly

used classes supporting L.L.Bean exception handling. It generated a large

number of dependencies making it brittle and costly to maintain. To manage

this problem, the exception classes were moved into their own subsystem and

the remaining parts were reorganized into multiple subsystems of related

concepts as shown in Fig. 6. This problem also illustrates how analyzing usage

can be used to identify and group reusable assets.

Fig. 6. Breaking up Catchall Subsystems

STEP 5: Refactoring the Code

With the right tools and a well-defined architecture, prototyping packaging

change was relatively simple. Fortunately, L.L.Bean’s code restructuring effort

was primarily limited to changing packages (e.g. Java package and import

statements), and did not affect code at a method level.

The initial goal was to take a “big bang” approach by re-architecting the

entire system at once. The large commitment to cut over to a consolidated and

restructured code base in one step proved costly and did not mesh with the

various iterative development cycles across development teams. Instead, an

incremental approach is being used where new development and refactored

code are packaged according to the principles of the layered architecture.

Development teams and configuration engineers use DSM models to analyze

static dependencies as well as to prototype new packages and package changes

during the normal development cycle. This has proven to be a sustainable

approach for continuous improvement of the code base.

A few key standards in place at L.L.Bean have helped facilitate this

approach. First, using a standard IDE, developers can easily organize import

statements such that fully qualified class names are not embedded within

methods. Second, wildcards are not allowed in import statements. Automated

12

configuration management processes enforce standards8. As a result, there

existed a relatively consistent state of package and import statements. The last

important standard here is unit tests. L.L.Bean standards require a unit tests for

every class, and most software development teams employ test-first

development methodologies9. After restructuring, each unit test is exercised,

providing an immediate window into the impact of the changes.

 4 Evolving & Improving the Architecture

A software engineering process was needed that would prevent architectural

drift and the need for large scale refactoring in the future. A set of rules were

created that could be applied to any of L.L.Bean’s DSM models, and visibility

of maintenance processes was increased.

4.1 Rules

Design rules are the cornerstone of architecture management. L.L.Bean

developed a simple set of architecture enforcement rules. These rules enforce a

layered architecture and essentially state that members of a given layer may

only depend on other members in the same level, or in layers below it.

Rules also help software engineers identify reuse candidates. When

violations occur, the nature of the dependencies and the specific behavior of the

Java code are closely analyzed. If there are multiple dependencies on a single

resource that break an allowed dependency rule, then the target resource is a

candidate for repackaging. The analysis is followed by a discussion with the

appropriate project manager, architect or software developer.

Governance reduces software maintenance cost, improves quality, and

increases agility, by enabling architectural remediation during ongoing

development.

4.2 Maintaining Visibility

Architectural governance offers several benefits. A DSM model provides

consistent visibility and supports on-going communication between

development teams, configuration engineers and project leaders. It also

facilitates change impact analysis. L.L.Bean creates DSM models at different

organizational levels from application-specific to a comprehensive “master

model”. Application modeling during normal development cycles enables

configuration engineers to determine what dependencies are missing, what

dependencies are using an outdated version, whether unused component

8 http://pmd.sourceforge.net/
9 http://ww.junit.org/index.htm

Achieving Agility Through Architecture Visibility 13

libraries that are included should be removed, and to report on changes between

development iterations. As of the writing of this paper, this analysis and on-

going communication have resulted in a 10% reduction in the number of Java

jar files being versioned and dramatically improved understanding about the

true dependencies of the applications and the jars they consume.

L.L.Bean creates multiple dependency structure matrices for various

purposes. One is designated as “master model”, which maintains visibility to the

current state of the overall architecture as new development continually

introduces new dependencies. The master model is integrated with and updated

through automated configuration management processes, and is designed to

support dependency governance. Each time a new version of a software element

is created, the master model is updated, design rules are applied and when

violations are detected, they are reported to the appropriate stakeholders (project

managers, configuration managers, architects, and reuse engineers) who

determine whether each violation is a programming error or reflect change in

architectural intent. Violations also “break the build”, forcing software

development teams to correct problems before the new version is permitted to

move forward in its lifecycle.

For additional analysis, L.L.Bean created an analysis and configuration tool

leveraging DSM metadata designed to address two long-standing questions.

First, given a class, which jar file contains that class? Second, given a jar file

which other jar files does it depend upon? This information is then stored in

query optimized database tables that are refreshed with each update. The query

operation is exposed as a service for use with automated configuration

management processes. For example, dependent components defined in build

scripts are updated with new dependencies, including the order of those

dependencies as code is modified during the course of normal development.

5 Lessons Learned

L.L.Bean’s experience has been successful in demonstrating the value of using

an architecture dependency analysis based approach to improve software

agility. There were several lessons learned along the way that should be kept in

mind.

While good tool support is essential, without good development practices,

use of established coding standards, active configuration management, and

consistent unit testing, tool use would be much more time-consuming and less

effective.

Dependency information must be visible to be managed, but that alone is not

enough to reduce maintenance costs and effort. It must be supported by the

ability to try “what if” scenarios and creating prototypes to explore change

impact.

Business drives requirements and ultimately the need to be agile. The “big

bang” approach wasn’t viable in an environment with multiple development

14

teams that had various and, often, conflicting development cycles, each with

different business drivers. Moreover, it became evident that the difficult and

costly attempt at using a “big bang” approach was not necessary. Following the

incremental approach described in Section 3 development teams remain agile

and refactor to use the layered architecture as part of their normal development

cycles.

Beyond consolidating and repackaging code, there are often implications

with respect to external (non-Java) component coupling. In some cases fully

qualified Java packages were specified in scripts and property files. In other

cases, Java classes referenced external components, which presented issues

when consolidating code. The lesson learned was that change impact is often

greater than what is originally estimated.

6 Limitations and Future Work

While it is believed that DSMs can be applied to systems implemented in other

languages and databases, the L.L.Bean experience is only with Java based

software. Therefore, the results of this experience may not generalize to other

types of systems.

While the experience reported here has made a substantial impact on L.L.

Bean’s ability to maintain its code-base, we believe this is just one of many

benefits that architecture analysis can provide. This report validates the DSM’s

support for evolvability, we are continuing to explore the potential for

extracting other relationships from code, in particular run-time relationships,

which can be used to identify the existence of Component and Connector (run-

time) architectural styles and the application of the DSM to support analysis of

a variety of run-time quality attributes.

7 Summary

The key to L.L.Bean’s code restructuring success was increasing visibility of

both system’s architecture and the process. L.L.Bean has found that increasing

the visibility of architecture greatly reduces architectural drift as the system

evolves and at the same time reduces ongoing maintenance costs. Architectural

visibility provides guidance for large-scale refactoring.

L.L.Bean also discovered that changing the structure of the system can

sometimes be achieved without substantial code modifications and that large

scale re-organization is a complex process that, when done with proper tool

support and in a disciplined software development environment, can be

effective.

The results of this experience demonstrate that architecture-based analysis

can improve the productivity of software development. It is hoped that future

research and practice will produce continued advancement in architectural

support for improved software quality.

Achieving Agility Through Architecture Visibility 15

Acknowledgements. Sincere thanks to Doug Leland of L.L.Bean for his skillful

mentorship and guidance, to David Smith and Tom Gould of L.L.Bean for their

many insightful contributions to the Reuse Team and code dependency analysis.

References

1. Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M. Pattern-

Oriented Software Architecture: A System of Patterns, Wiley, 1996.

2. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., and

Stafford, J. Documenting Software Architectures: Views and Beyond, Addison

Wesley, 2003.

3. Ducasse, S., Ponisio, L., and Lanza, M. “Butterflies: A Visual Approach to

Characterize Packages”. In Proceedings of the 11th International Software Metrics

Symposium (METRICS ’05), Como, Italy, September 2005.

4. Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D., Refactoring:

Improving the Design of Existing Code, Addison Wesley, 1999.

5. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns, Addison

Wesley, 1995.

6. Hautus, E.. “Improving Java Software Through Package Structure Analysis”.

Proceedings of the 6
th

 IASTED International Conference Software Engineering and

Applications (SEA 2002), Cambridge, Massachusetts, September 2002.

7. Jacobson, I., Booch, G., and Rumbaugh, J. The Unified Software Development

Process. Addison Wesley, 1999.

8. Jacobson, I., Griss, M., and Jonsson, P. Software Reuse: Architecture, Process and

Organization for Business Success. Addison Wesley, 1997.

9. Kruchten, P. “Architectural Blueprints: The “4+1” View Model of Software

Architecture”. IEEE Software, 12(6):42-50, November 1995.

10. Melton, H. and Tempero, E. An Empirical Study of Cycles among Classes in Java,

Research, Report UoA-SE-2006-1. Department of Computer Science, University of

Auckland, Auckland, New Zealand, 2006.

11. Melton, H and Tempero, E. “The CRSS Metric for Package Design Quality”.

Proceedings of the thirtieth Australasian conference on Computer science, Ballarat,

Victoria, Australia, Pages 201 – 210, 2007 .

12. Perry, D. and Wolf, A., ``Foundations for the Study of Software Architecture''.

ACM SIGSOFT Software Engineering Notes, 17:4 (October 1992

13. Poulin, J. S. Measuring Software Reuse. Addison Wesley, 1997.

14. Poulin, J. S. “Measurements and Metrics for Software Components”. Component-

Based Software Engineering: Putting the Pieces Together, Heineman, G. T. and

Councill, W. T. (Eds), Pages 435-452, Addison Wesley, 2001.

15. Sangal, N. and Waldman, F. “Dependency Models to Manage Software

Architecture”. The Journal of Defense Software Engineering, November 2005.

16. Sangal, N., Jordan, E., Sinha, V. and Jackson, D. “Using Dependency Models to

Manage Complex Software Architecture”. Proceedings of the 20th annual ACM

SIGPLAN Conference on Object-Oriented Programming Systems Languages and

Applications, Pages 167-176, San Diego, California, October 2005.

17. Stafford, J. Richardson, D., and Wolf, A., “Architecture-level dependence analysis

in support of software maintenance”. Proceedings of the Third International

Conference on Software Architecture, Pages 129-132, Orlando, Florida, 1998.

16

18. Stafford, J. and Wolf, A., “Software Architecture” in Component-Based Software

Engineering: Putting the Pieces together, Heineman, G. T. and Councill, W. T.

(Eds), Pages 371-388, Addison Wesley, 2001.

19. Lieherherr, K. J., Holland, I.M. AND Riel, A.J. 1988. Object-oriented

programming: an objective sense of style. In OOPSLA’88 Conference Proceedings

(San Diego, California, Sept. 25–30). ACM SIGPLAN Not. 23, 11 (Nov.) 323–334.

